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An n-gonal quasilattice in two dimensions as a dual lattice to a 
multiple periodic grid 

K Niizeki 
Department of Physics, Tohoku University, Sendai, Japan 

Received 12 August 1988 

Abstract. An n-gonal quasilattice in two dimensions is constructed for the case of n = 6m 
( m  P 2) as a dual to an m-tuple periodic grid G,,, = G0v rGou . . . U rm-l  Go, where Go 
is a periodic grid with hexagonal point symmetry and r the rotation operation of the plane 
by angle 2 a / n .  We investigate the case where Go is a honeycomb, triangular, KagomC or 
diced grid. The resulting quasilattice is not of ‘Bravais’ type unless Go is the honeycomb 
grid. It is shown also that the same quasilattice is obtained with the projection method 
from the 2m-dimensional lattice L = L o x  L o x  . . . x Lo,  where Lo is a triangular, honeycomb, 
diced or KagomC lattice being dual to Go. In the projection method, the 2m-dimensional 
Euclidean space is divided into cells with a 2m-dimensional grid G which is dual to L. It 
is shown that G, is identical to a two-dimensional section of G. 

1. Introduction 

The most general method of constructing an n-gonal quasilattice ( n  being even) in 
two dimensions ( 2 ~ )  is the projection (more exactly, the cut-and-projection) method 
(Niizeki 1989a, b); an n-gonal quasilattice has D,, the dihedral group of order 2n, as 
its macroscopic point symmetry. In this method, we start from a periodic n-gonal 
lattice in a higher dimension and cut the lattice with a slab (more exactly, a hyperslab) 
being parallel to a 2~ subspace, which is referred to as the external space. Then, an 
n-gonal quasilattice is obtained by projecting the cut lattice points onto the subspace. 
If the starting lattice is a Bravais lattice with the minimal dimension given by cp(n) ,  
with cp being the Eulerian function in number theory, we obtain a ‘Bravais-type’ 
quasilattice. On the other hand, if the dimension of the starting lattice is higher than 
the minimal dimension or the starting lattice is not a Bravais lattice, we obtain a 
‘non-Bravais-type’ quasilattice. 

In the projection method, the orthogonal complement of the external space in the 
Euclidean space embedding the starting lattice is referred to as the internal space. The 
width of the slab is given by the window which is equal to the projection of the slab 
onto the internal space. If n 2 14, i.e. cp(n) 2 6, the dimension of the internal space is 
equal to or larger than four. Then, to investigate the form of the window is a problem 
of higher-dimensional geometry, which is difficult to investigate visually. 

A complementary method of obtaining a quasilattice to the projection method is 
the grid (more exactly, the dual-grid) method. In this method, an n-gonal quasiperiodic 
network (or tiling) associated with an n-gonal quasilattice is obtained as the dual 
network to a quasiperiodic grid on the same plane on which the quasilattice is put. 
The original grid method assumes a linear grid, which is a superposition of several 
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simple grids; a simple grid is a periodic array of parallel lines (de Bruijn 1981, Krammer 
and Neri 1984, see also Niizeki 19886). It is subsequently extended to the case of a 
multiple periodic grid, which is a superposition of several equivalent periodic grids 
(Stampfli 1986, Niizeki 1988a, Korepin et af 1988); the superposition of the equivalent 
periodic grids gives rise to a quasiperiodic pattern with a non-crystallographic macro- 
scopic point symmetry. The grid method is superior to the projection method in that 
we can restrict our consideration to the geometry on the plane. 

A quasilattice obtained with the projection method is obtained, alternatively, with 
the grid method if the window is given by the projection of a Voronoi cell (polytope) 
of the starting lattice onto the internal space (Niizeki 1988a, Korepin et a1 1988). If 
the starting lattice is a simple hypercubic lattice, the corresponding grid is a linear 
grid (de Bruijn 1981, Gahler and Rhyner 1986, Niizeki 1988b). Under a different 
condition, we obtain a multiple periodic grid (Niizeki 1988a, Korepin et a1 1988). In 
the general case, we obtain a more complicated grid and the merit of the grid method 
over the projection method is lost. 

In this paper, we shall investigate in further detail the case of a multiple periodic 
grid over Niizeki (1988a) and Korepin et a1 (1988). We shall extend the grid method 
so that the case of a ‘non-Bravais-type’ quasilattice is included. We will extend it also 
to the case where the grid is derived from a non-Voronoi division of the space. We 
shall confine our arguments to the case of an n-gonal quasilattice with n being a 
multiple of 6. 

In 9 2, we present exact definitions of the terms, ‘network’, ‘grid’ and ‘duality’ 
which are used in this paper. In 0 3 ,  we introduce several periodic ZD grids and 
higher-dimensional grids. We construct in 9 4 an n-gonal quasilattice with the projec- 
tion method from a higher-dimensional lattice. We show in 0 5 that a quasilattice 
constructed in Q 4 is obtained, alternatively, as a dual to a multiple periodic grid. We 
discuss related subjects in 0 6. 

The theory will be developed quite generally but it will be more easily comprehended 
if readers consider the case where the parmeter m is equal to 2. 

2. Networks and grids 

We shall denote by Ed the d-dimensional ( d  3 2) Euclidean space. We consider Ed 
to be a vector space with the Euclidean norm. Let V be a discrete set of points in Ed. 
Then, we shall call V a semi-uniform system if there exists an upper limit for the 
radius of a ball which can be accommodated in Ed - V .  V is a countable set because 
it is discrete. 

Let P = {{x, x’} I x, x’ E V and x # x’}, i.e. the set of all possible pairs of points in a 
semi-uniform system V, and let E be a subset of P. Then, we shall call N = { V ,  B }  a 
network. An element in V is called a vertex and the one in B a bond. A bond, 
{x, x’} E E, is represented geometrically by a segment connecting x and x’, i.e. {( 1 - t ) x +  
tx’l t E [0, I]}. We shall identify hereafter the bond with the segment. N is connected 
if, for any two vertices x and x‘, there exists a chain of bonds, {x, xl}, {xl, x2}, . . . , { x k ,  x’} 
for some integer k. A connected network is called regular if every bond can share a 
point with other bonds only at its two ends. A regular network has no pairs of crossing 
bonds. In this paper, we mean by a ‘network’ only a regular network. 

A d-dimensional ( d  t 2) grid G is a connected closed set of points in Ed satisfying: 
(i)  its measure is zero; (ii) Ed - G decomposes into disjoint sets which are convex 
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polytopes (polygons or polyhedrons if d = 2 or 3, respectively) in Ed Note that the 
boundaries of the Voronoi partition (of the space) with respect to a semi-uniform 
system form a grid. We will see various grids in later sections. 

Let G be a d-dimensional grid. Then, we shall refer to connected components 
(polytopes) in Ed - G simply as cells. The set of all the cells of G is denoted by 
C = C( G ) .  Note that the set of vertices of all the cells, V = V( G ) ,  and the set of edges 
of them, B = B(  G ) ,  form a network N (  = N (  G)) = { V, E}. 

A d-dimensional network (or grid) is itself a d-dimensional pattern and its symmetry 
is represented by a space group. If the space group coincides with that of a d- 
dimensional lattice, the network (or grid) is called periodic. If N = { V ,  B} (or G) is 
periodic, V (or V( G ) )  represents a d-dimensional lattice whose space group is identical 
to that of N (or G ) .  In this case, we shall use symbol L (or L ( G ) )  in place of V (or 
V( G ) )  because it is, then, a periodic lattice. 

In the rest of this section, we will discuss in more detail networks and grids in two 
dimensions. Although a 2~ grid and the network associated with it are logically different 
objects, we may sometimes identify the two. 

A vertex of a network is called a balanced vertex if the bonds shooting from it 
divide a neighbourhood of the vertex into disjoint acute sectors as explained in figure 
1. The number of bonds shooting from a balanced vertex is larger than two. A network 
is called a balanced network if all its vertices are balanced and a grid is called a 
balanced grid if the associated network is balanced. In this paper, we shall confine 
our consideration only to balanced networks and grids. Note that a 2~ grid of a 
brick-wall pattern which is topologically isomorphous to the honeycomb grid is not a 
2~ grid as defined here because every vertex is not balanced. 

A network N = { V, B }  is called the dual to the grid G if (i)  there exists a bijection 
(one-to-one correspondence) r from V onto C = C ( G )  and (ii) a necessary and 
sufficient condition for {x, x’} E B with x, X’E V is that the cells T(x) and r (x’ )  share 

( d )  ( e )  (f) 
Figure 1. Vertices ( a ) ,  ( b )  and ( c )  are balanced, while ( d ) ,  (e)  and (f) are not. 
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an edge. If a network N = { V, B} is given, we can define in a reverse way a dual grid 
G to N. 

The duality is a topological relationship, so that a dual to a given grid (or a network) 
is not uniquely determined by Euclidean geometry. A grid (or network) always has a 
dual network (or grid) because we deal only with balanced networks and grids. 
Moreover, we may assume that the dual grid (or network) to a periodic network N 
(or grid G )  is also periodic and the space group is common between the dual pair. 
In particular, if every cell in C = C( G )  has a centre of symmetry, the dual network 
N = { V, B }  is uniquely determined; V is a set of the centres of the cells in C. 

3. Periodic grids in two and higher dimensions 

3.1. 20 grids with hexagonal point symmetry 

We shall investigate periodic 2~ grids with the hexagonal point symmetry D6. We 
shall identify in this subsection a grid with the network associated with it. 

We assume that all the bonds of the grid (exactly network) to be considered have 
a common length. Moreover, we assume that a bond shooting from a vertex can take 
only one of the six directions which are parallel to the vertex vectors of a regular 
hexagon centring on the origin. The honeycomb grid, GHC, the triangular grid, GT, 
the KagomC grid, GK, and the diced grid, GD, as given in figure 2 satisfy these 
conditions. GHC (or GK) and GT (or G,) are dual to each other. GT and GK are 
linear grids. The four grids have a common space group, i.e. P6mm. LT= V( GT) is 
a triangular lattice, which is a Bravais lattice, so that all the vertices are equivalent. 
Lx = V ( G x )  is not a Bravais lattice for X = HC, K or D; it is obtained from LT by 
decorating its unit cells appropriately. It is divided into a number of Bravais lattices 

Figure 2. ( a )  A triangular grid GT (full lines) and a honeycomb grid G,, (broken lines). 
They are dual to each other. Cells of GT (or GHc) are the Voronoi cells of the lattice 
L,,= V(G,,) (or &= V(G,)). (6)  A KagomC grid G, (full lines), and the diced grid 
GD (broken lines). They are dual to each other. Cells of GD are the Voronoi cells of the 
lattice L, = V ( G , )  but those of G ,  are not the Voronoi cells of L,. 
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which are isomorphous to LT ; LHC (or LK) is composed of two (or three) equivalent 
sublattices, while LD is composed of three sublattices, two of which are equivalent. 

C x ,  = C (  G,.) with X ' =  HC, T, K or D is a dual set to Lx with X = T, HC, D or K, 

respectively and, hence, a dual statement to the one given above for Lx applies to 
C,.. Note also that G H C ,  GT or GD is obtained with the Voronoi partition from LT, 
L H C  or L K ,  respectively (but GK is not). It follows that a bond of one of the dual 
pair of GT and G H C  (or GK and GD) is always perpendicular to the dual bond of the 
dual grid (see figure 2). 

E2 can be identified with C, the complex plane. Therefore, a periodic 2~ grid Gx 
and the relevant lattice L, = V(G,) can be considered to be subsets of C. Let Gxj 
be a dual to G,. Then, each cell in C, = C ( G x )  is labelled by a lattice point in 
Lx,= V(G,.). We shall denote the cell labelled by Z E  Lx.  as C(z) .  

3.2. A higher-dimensional grid being dual to a network given by a direct product of 2D 

networks 

In this subsection, we shall identify the 2m-dimensional ( m  3 2) Euclidean space Ezm 
with C" = C x C x . . . x C. Moreover, we shall distinguish a 2D grid Gx with X = HC, 

T, K or D from the relevant network N x .  Let N x  = {Lx, Bx} ( L ,  c C) .  Then, we can 
construct a 2m-dimensional periodic network N = { L ,  B }  as followst. Firstly, L = 
Lx x Lx x . . . x Lx c C". Secondly, if L = ( zo, zl, . . . , z,,,-~), z' = (zb, z:, . . . , Z L - ~ )  E L, 
we postulate that {z, z'} E B if and only if ( i)  zi = z:, V i  E {0,1, . . . , k - 1, k + 1, . . . , m - 1) 
for some k and (ii) { z k ,  .&}E Bx.  We shall refer to N constructed in this way as the 
'direct product' of n networks Nx and represent this fact by N = Nx x Nx x . . . x N x .  
We may refer to L ( = L x  x Lx x . . . x L,) as a hyper-X lattice (i.e. hypertriangular 
lattice, etc). If Lx is composed of p Bravais sublattices, L is divided into q =pm 
Bravais sublattices as L = L ,  U L, U . . . U L,. 

Let Gx. be the dual grid to N x .  Then, a 'dual' grid G c  C" to N = 
N x  x Nx x . . . x Nx is defined by G = G'O) U G"'u . , . U G'm-l) , where G ( k ) =  
C k  x Gx, x Cm-l -k ,  k = 0 ,  1, . . . , m - 1, are 2~ arrays of (2m -2)-dimensional 'tubes' 
(cf Niizeki 1988a, Korepin et a1 1988). A cell in C = C(G) can be obtained quite 
easily; if z = (zo, zl, . . . , z , , -~ )  E L, the cell labelled by z is given by a convex polytope 
r (z )  = C(zo) x C ( z , ) x . .  . X  C(zm-l), which is a 2m-dimensional hyperism (cf the fact 
that a Voroni cell of a simple hexagonal network NTx N I  is a hexagonal prism). r ( z )  
is the Voronoi cell of the lattice point z in L if X = HC, T or K. If z E LA, the Ath 
sublattice ( A  = 1,2, .  . . , q )  of L, we may write T(z) = t+rA,  where rA is a polytope 
centring at the origin. Different rh have different forms and/or orientations. 

4. A construction of an n-gonal quasilattice with the projection method 

Ezm = C" is written as CO CO. . .O C, where the symbol O stands for taking a direct 
sum between two vector spaces with the Euclidean norm. Then, a position vector in 

t This construction is a generalisation of the one by which a simple hypercubic network NsHC in m dimensions 
is obtained as a direct product of m equivalent I D  networks NI ; NsHC = NI x NI x . . . x N, . Similarly, a 
network associated with the simple hexagonal lattice in 3D is given by NT x NI.  

Note that a network associated with a face-centred cubic lattice or diamond lattice is, for example, not 
represented as a direct product of lower-dimensional networks. 
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Elm is represented by a complex vector z = (zo, z1 , . . . , zm-,) E C". Let us introduce 
an m-dimensional unitary matrix R which acts on z = (zo, zl, . . . z".-~) E C" as Rz = 
(WZ, , , -~ ,  zo, . . . , z,,,-~) with w = exp(n i/3) = ( a + i ) / 2 ) .  R represents an orthogonal 
transformation of El,,, = C". We obtain that R" = wZ and R" = I with n = 6m, where 
I is the m-dimensional unit matrix. Thus, each component in C" = CO CO..  .@ C 
is an invariant subspace against R"; R" acts onto each subspace as a rotation through 
~ / 6 .  

Let us introduce an (anti-linear) transformation, S, of C" by S(zo, z l , .  . . , z,,,-~) = 
(fo, E l , .  . . , where the bar stands for the complex conjugate operation. Then, 
we obtain S2 = I and SRS = R-'. Therefore, R and S generate a 2m-dimensional point 
symmetry group, 6,,, which is isomorphous to D,. 

From the secular equation, det(h I - R) = A " - w = 0, the eigenvalues of R are 
obtained as l k k ( q k ,  k = 0 , 1 , .  , . , m - 1  with l=exp(2.rr i /n)  and q = 
l6 (=exp(21~ i/m)). The corresponding left eigenvectors are given by u ( ~ )  = 
(1, l k ,  . . . , JF- ' ) ,  k = 0,1, . . . , m - 1; d k ' R  = The different eigenvectors are uni- 
tarily orthogonal to each other, so that C"' is written as a direct sum of m invariant 
I D  complex subspaces against R. We shall denote this decomposition of C"' as 
C"' = C'O CO.. .OC'= (C')", where C'= E ;  is a ID  complex vector space being 
isomorphous to C. Note that R acts on the kth subspace in ( C')" as a multiplication 

On the other hand, S acts on the kth subspace in (C')" as the complex conjugate 
operation. Therefore, each component of (C')" is an invariant subspace against 6, 
which acts on the first component in (C')"' as D,. 

Since Nx with X = HC, T, K or D has centres of symmetry of D6, we can assume 
that it is embedded in C so that wNx = Nx and Nx = Nx. Then, the 2m-dimensional 
network N = Nx x Nx x . . . x Nx and the 'dual' grid G to N (={ L, E } )  are invariant 
against R and S. That is, 6, is a subgroup of the point symmetry group of N It 
follows that the set of points defined by 

of l k .  

is an n-gonal quasilattice (cf Korepin er a1 1988), where .rr is the projector from (C')" 
onto its first component C'= E ;  = {zu 1 z E C} c C" with U = (1, . . . , c"'-'). Note that 
the condition T(z) n E ;  f 4 means that the cell r(z) is cut by the external space (tiling 
space) E ; .  Note also that, apart from a scale factor, P(Z) is equal to do ' .  z =  
zo+z , l+ .  . . + ~ , , , - ~ l " ' - l ,  i.e. the mapping of each subspace in C" onto E ;  by IT is a 
congruent transformation. 

Let B,={{IT(z), .~~(Z'))~{Z,Z'}E B and ~ ( z ) ,  IT(Z')E Lo}. Then, we obtain a 
quasiperiodic network NQ = {LQ, Bo}. The vector representing the bond between IT(Z) 
and IT(C') in BQ is given by ~ ( 2 ' -  z ) ,  which is equal to lk  for some k because {z, z'}  E B. 
Thus, all the bonds in NQ have a common length (the unit length) and the orientation 
of a bond is parallel to one of the vertex vectors of a regular n-gon centred on the origin. 

LQ is divided into 'Bravais sublattices' as LQ = L , ,  v L , v . . . v L,, with L , ,  = 
{IT(Z) ) z  E LA and T(z) n E ;  f 41. Let IT' be the projector of C onto the internal space 
E;,,,-* = (C')"-l, the orthogonal complement of C', E ;  in Cm(= E*,,,). Then, a ' ( E ; )  = 
0, so that the condition T(z)  n E ;  f 4 with z E LA is equivalent to O E  IT'(z+I'*), which 
is, further, equivalent to IT'(Z) E W,, where W, = -d(r,) is the window to be assigned 
to sublattice LA. Consequently, L , ,  = {.rr(z) ( z  E LA and ~ ' ( 2 )  E WA}. Thus, equation 
(1) is a special case of the one in Niizeki (1989b) in which the phase vector is set 

'm 
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equal to zero. Strictly speaking, LA in this paper is not necessarily equal to the n-gonal 
Bravais lattice with the minimal dimension as will be discussed in a later section. 

In summary, the quasiperiodic network NQ is the projection of a cut of a higher- 
dimensional periodic network N onto E;. 

5. A construction of a quasiperiodic network (grid) as the dual to a multiple 
periodic grid 

A lattice point in a hyper-X lattice L contributes to LQ in equation (1) if the relevant 
cell of the dual grid G is cut by E;. Therefore, it is important to investigate the pattern 
of the section of G along E ; .  Since Gik'= C k  x G,,X Cm-lPk  and E ;={zu lz~  C}, 
weobtain G'k 'n  E ; = ( Z U I Z ( ~ ) ~ E  GXt}={zlkuIz~  Gxt}. Itfollowsthat r ( G i k ' n E ; ) =  
{mzlk I z E G,.}cc lkGXt,  where use has been made of ~ ( u )  = m. Since G = G'O'u Gi"w 
. . .  ~ ( m - 1 )  , we obtain G, = T ( G n  E ; )  = Gx,u  lG,,u . . . U lm-'Gx., where an 
unimportant scale factor, m, is omitted. Thus, the section, G,, is found to be equal 
to a superposition of m equivalent periodic grids Gx., CG,., . . . , 5"-'Gxf. We shall 
call G, as an m-tuple x'-grid (m-tuple honeycomb grid, etc.). 

It can be readily proved that G, is a 2~ grid in the definition presented in 0 2. A 
cell of G, represents a 2~ section of a cell of G along E;. Therefore, there is a 
bijection between C(G,) and LQ. Moreover, the line including a common edge 
between two adjacent cells of G, is a section of the boundary hypersurface !J between 
the relevant cells, T ( z )  and T ( z ' )  of G. The section, II n E;,  is a line being perpendicular 
to the direction of the bond, T ( z ' - z ) ,  which follows from the fact that z ' - z  is normal 
to II. Thus, we can conclude that NQ = {LQ,  BQ} is the dual network to G,. N ,  is 
determined uniquely (apart from the scale) from G, by the conditions that all the 
bonds of NQ are of an equal lengths and every dual pair of the bonds are perpendicular 
to each other. 

We have so far considered G, as a grid and NQ as a dual network to G,. We 
may consider, conversely, G, as a 'network' and N,  as a dual 'grid' to G,. In this 
treatment, we focus our attention rather on cells (or tiles) in NQ than on the vertices 
of NO. Then, V =  V(G,), the set of the vertices of G,, is divided into two 
disjoint sets as V = VI + V2, where VI = V( Gx.) + V( LG,.) + . . . + V( gm-' Gx,) 
(=L , ,+  lL,,+. . . + l"'-'L,,) and V2 is the set of all the crossing points between the 
bonds of G,., lG,., . . .,lm-'Gx.. 

The dual 'grid' NQ to the 'network' G, divides the plane into cells. The cells are 
equisided polygons such as a triangle, a hexagon or a rhombus (a square is the special 
case of a rhombus) whose inner angles are multiples of 2 ~ /  n. The lengths of the sides 
are common among different types of cells. A cell of a given type can assume several 
orientations which are consistent with the point symmetry D, of NQ. The dual cell 
to a vertex in V, is a rhombus because the vertex represents a crossing point between 
the bonds of different periodic grids in G,. The same is true for a vertex in VI if 
X '  = K because it is a crossing point between two lines. On the other hand, the dual 
cell to a vertex in VI in other cases is an equisided triangle or a regular hexagon 
depending on whether the vertex is three-pronged or six-pronged, respectively. 

It is usual that the cells of NQ are taken to be tiles and the division of the plane 
into cells is taken to be a tiling. That is, NQ represents an n-gonal quasiperiodic tiling 
(QW) of the plane. A QW obtained as the dual to a multiple triangular or KagomC 
grid is a special case of a QW obtained from a linear grid. In this paper, the m-tuple 



1878 K Niizeki 

Figure 3. A dodecagonal QFT obtained as a dual to the double-diced grid as given in figure 
4. It has four kinds of tiles: an equisided triangle, a regular hexagon, asquare and a rhombus. 

Figure 4. A double-diced grid. The 12-pronged vertex at the origin is a singular vertex 
caused by a coincidence of two six-pronged vertices. A six-pronged vertex of one of the 
two diced grids is located on a bond of the other, resulting in an eight-pronged vertex 
which is another kind of singular vertex. 
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triangular (or KagomC) grid is derived from a higher-dimensional grid in 2m dimensions 
but it is derived, alternatively, from a simple hypercubic lattice in 3m dimensions 
(Niizeki 1988b). 

A dodecagonal QPT obtained as the dual to a double honeycomb grid is presented 
by Stampfli (1986) and investigated by Korepin et a1 (1988). 18-gonal and 24-gonal 
QPT are obtained as the duals to multiple honeycomb grids by Niizeki (1989a). 

A QPT obtained as the dual to a multiple-diced grid has not been presented by any 
author. We show in figure 3 a dodecagonal QPT obtained as the dual to a double-diced 
grid as given in figure 4. The tile of an equisided triangle and that of a regular hexagon 
are dual to a three-pronged vertex and a six-pronged vertex of the two diced grids GD 
and lGD and a square tile (or a rhombic tile) is dual to a crossing point between two 
bonds which are perpendicular (or oblique) to each other. 

6. Discussions 

We can include the phase vector # =(do, d l ,  . . . , E E;,-z into equation (1): 

L , ( # ) = { d z ) I z ~  L and T(z)n(#+E;)#  4) (2a) 

=L,,l(#)u~,,*(#)u ' e .  uL,,,(#) (2b) 

L , A ( # ) = ( ~ T ( Z ) ~ Z E L ,  and v ' ( z ) E # +  WA}. (3) 

L,(#)  is derived, alternatively, from G,(#) = T (  G n  (# + E ; ) )  = ( Gx,- do) U 

l (Gx , -  4 ' )  U . . . U lm- ' (Gx t -  
Lo(#)  belongs to the same local-isomorphism class (LI  class) as the original 

quasilattice L ,  does if m = 2a3b with a and b being integers, e.g. m = 2, 3 and 4. This 
is because 2m, the dimension of the starting lattice L, is equal in this case to the 
minimal dimension, cp(n), of an n-gonal lattice. On the contrary, if m # 2"3', e.g. 
m = 5 ,  L,(#)  may belong to a different LI class from that for L,. Moreover, the 
macroscopic point symmetry of L o ( # )  can be lower than D, for some #. A 
classification of quasiperiodic patterns, L,( #), will be performed by introducing an 
invariant(s) of # in a similar way as in the case of linear grids (Niizeki 1988b). 

A multiple periodic grid G,(#) is called regular if vertices of any one of the 
periodic grids in G,(#) are located off others and there exist no multiple crossing 
points among different bonds of the periodic grids. G,(#) is regular for a generic 4. 
If G, = G,(O) is regular, N, (or La) as well as G, has D, as its exact point symmetry. 
However, the origin of G, is a singular vertex for any m if X '  = T or D. Moreover, 
the double-diced grid given in figure 4 has another kind of singular vertex; a six-pronged 
vertex of one periodic grid is located on a bond of the other. A singular grid is 
transformed to a regular one by an infinitesimal change of the phase vector #. On 
this procedure, the exact symmetry of N ,  is broken 'spontaneously'. We can observe 
it in the structure in the central regular dodecagon in figure 3; the two hexagons in 
the dodecagon are dual to the six-pronged vertices of GD and CG, which coincide at 
the origin. Figure 3 includes other structures breaking the exact dodecagonal symmetry. 

The main part of constructing the quasiperiodic network N ,  = {L,,  B,} from the 
m-tuple periodic grid G, = Gxf U {G,,u . . . U lm-'Gx.  is a topological work, which 
is difficult to treat with a computer. Fortunately, there exists an algorithm for calculating 
the vertices of the tile which is dual to a cell of G,. Let z be a representative point 
in the cell. Then, we can calculate the lattice points zo, z l ,  . . . , z,-' E L, which satisfy 

with the dual-grid method. 
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z E lkC(z,) ,  k = 0, 1, .  . ., m = 1, so that the dual lattice point of L, to the cell is given 
by z o + l z l + .  . .+{'"-IZ,-,. If a vertex of G, is given, we can readily calculate 
representative points in the cells which adjoin at the vertex. Figure 3 (or figures 2 and 
3 in Niizeki 1989a) has been drawn in this way with a computer. 

If m = 2 ( n  = 12), the internal space as well as the external space is two-dimensional 
and we obtain d ( z )  = zo-<z, because l1 = -5 (7 = -1). It follows from this and the 
equality T(z)  = C(zo) x C( zl)  that d(r ( z ) )  = C(zo) - l C ( z , )  = {z - lz'l z E C( zo) and 
Z ' E  C(z,)}. Using this result, we can easily obtain windows to be assigned to the 
sublattices for X =T, HC, K or D. The windows obtained in this way for X = HC and 
K have been presented already in Niizeki (1988a, 1989b), respectively. 

We have shown that the tile statistics of a QFT obtained from a linear grid is easily 
calculated (Niizeki 1988b). This can be readily extended to the calculation of the tile 
statistics for the case of a multiple-honeycomb grid or a multiple-diced grid, which 
we will discuss in the appendix. 

Before closing the paper, we present a remark: the reason why everything is simple 
for the quasilattice investigated in this paper derives from the fact that the starting 
lattice in the projection method is a direct product of equivalent ZD lattices. A decagonal 
lattice in 4~ or a heptagonal lattice in 6~ cannot be represented as a direct product of 
2~ lattices, so that a 'Bravais-type' decagonal quasilattice as presented in Niizeki 
(1989a) or a heptagonal one cannot be obtained from a multiple-periodic grid. 
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Appendix 

The tile statistics of a QFT are determined by the vertex statistics of the dual grid. The 
vertices of G, = Gxru  lGx,u . . . U gm-lGxt are divided into two groups VI and V2 
are presented in 0 5.  Since G, is a superposition of periodic grids, the statistics of 
the vertices in VI are readily calculated. We consider V2 in the case of X'= D. GD 
can be embedded into a triangular grid GT, which is a linear grid; GD is obtained 
from GT if every grid line is cut by the ratio 1/3 so that it is changed into a periodic 
array of segments. The ratio of the period of the array to the distance between two 
grid lines in GT is equal to 2 / 4 ,  which is irrational. Therefore, we can conclude that 
the statistics of the vertices in V, are (3)' times those in the case of GT. Thus, the 
statistics of a triangle, a hexagon, a square and a rhombus in the tiling in figure 3 are 
proportional to 2: 1/2: l / a :  l/&. By a similar argument, we find that the statistics 
of a triangle, a square and a rhombus in a dodecagonal QFT obtained from the 
double-honeycomb grid (Stampfli 1986) are proportional to 2:  l / d :  1 / 4 .  
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